Topology Proceedings 45 (2015) pp. 301-313: Characterizing C(X) among intermediate C-rings on X

ثبت نشده
چکیده

Let X be a completely regular topological space. An intermediate ring is a ring A(X) of continuous functions satisfying C∗(X) ⊆ A(X) ⊆ C(X). We give a characterization of C(X) in terms of extensions of functions in A(X) to real-compactifications of X. We also give equivalences of properties involving the closure in the real-compactifications of X of zero-sets in X; we use these equivalences to answer an open question about the correspondences of ideals in intermediate rings and z-filters on X.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology Proceedings 43 (2014) pp. 69-82: C and C* among intermediate rings

Given a completely regular Hausdorff space X, an intermediate ring A(X) is a ring of real valued continuous functions between C∗(X) and C(X). We discuss two correspondences between ideals in A(X) and z-filters on X, both reviewing old results and introducing new results. One correspondence, ZA, extends the well-known correspondence between ideals in C∗(X) and zfilters on X. The other, ZA, exten...

متن کامل

Mappings to Realcompactifications

In this paper, we introduce and study  a mapping from the collection of all  intermediate rings of $C(X)$ to the collection of all  realcompactifications of $X$ contained in $beta X$. By establishing the relations between this mapping and its converse,  we give a different approach to the main statements of De et. al. Using these, we provide different answers to the   four basic questions...

متن کامل

On constant products of elements in skew polynomial rings

Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014